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Confidence intervals for the parameters
of psychometric functions

LAURENCE T. MALONEY
New York University, New York, New York

A Monte Carlo method for computing the bias and standard deviation of estimates of the
parameters of a psychometric function such as the Weibull/Quick is described. The method, based
on Efron’s parametric bootstrap, can also be used to estimate confidence intervals for these
parameters. The method’s ability to predict bias, standard deviation, and confidence intervals
is evaluated in two ways. First, its predictions are compared to the outcomes of Monte Carlo simu-
lations of psychophysical experiments. Second, its predicted confidence intervals were compared
with the actual variability of human observers in a psychophysical task. Computer programs
implementing the method are available from the author.

The performance of an observer in a detection or dis-
crimination task is typically summarized by fitting a psy-
chometric function to the data. Examples of fitting
methods include probit analysis (Finney, 1971) and
maximum-likelihood fits using the Weibull/Quick psycho-
metric function (Quick, 1974; Watson, 1979; Weibull,
1951). These methods retain an estimate of threshold and
a measure of variability (slope).

Whatever fitting method is used, some measure of the
variability of the estimated psychometric parameters is
needed in order to compare the performances of an ob-
server in two experimental situations, or to compare the
performance of an observer to a theoretically motivated
value. This article presents a Monte Carlo method for
computing the bias, standard deviation, and confidence
intervals for maximume-likelihood estimates of the loca-
tion parameter o and slope parameter 3 for the Weibull/
Quick psychometric function (Quick, 1974; Watson,
1979; Weibull, 1951). The method is derived from
Efron’s parametric bootstrap and related work (Efron,
1979a, 1981, 1982, 1985). Section 2 contains a descrip-
tion and explanation of the method. Sections 3 and 4 report
two evaluations of the method. The outcomes of both
evaluations suggest that the parametric bootstrap provides
useful estimates of bias, standard deviation, and confi-
dence intervals for the location and slope parameters of
the Weibull/Quick psychometric function.

There are many different psychophysical procedures
(staircase methods, method of constant stimuli, etc.) to
select among in designing an experiment (see Levine &
Shefner, 1981), and either forced-choice or yes-no tasks
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may be used. Furthermore, there are several fitting proce-
dures, among which two, probit analysis and the
maximum-likelihood fit to the Weibull/Quick psychomet-
ric function, are most frequently employed. The paramet-
ric bootstrap method can be adapted to each of the com-
binations of experimental design and data analysis that
could arise. To ease the presentation, the method is first
applied to maximum-likelihood fits for a two-parameter
Weibull/Quick psychometric function using the method
of constant stimuli and assuming a forced-choice task. The
changes needed to use the method in other circumstances
are then described. The programs psifit, MOCSsim, and
anlyz, implementing the method, are described in the Ap-
pendix and are available from the author (see Appendix).

For some fitting methods, such as probit analysis (Fin-
ney, 1971), approximate confidence intervals can be as-
signed to a single measured threshold. These intervals are
based on the asymptotic normality of maximum-likelihood
estimates (discussed in the next section), and they are valid
only if “‘enough’’ data is collected for each psychomet-
ric function fitted. Analyses presented in the next section
of this article for the maximum-likelihood fit to the
Weibull/Quick psychometric function suggest that typi-
cal patterns and quantities of data collected in psycho-
physical studies do not always satisfy the assumptions of
the asymptotic theory for the slope parameter. McKee,
Klein, and Teller (1985) reached similar conclusions when
using small numbers of trials to estimate threshold via
probit analysis. Worst of all, the estimated confidence in-
tervals tend to be smaller than valid confidence intervals,
leading the experimenter to find differences where none
exist.

THE WEIBULL/QUICK OBSERVER

This section summarizes notation for the Weibull/Quick
psychometric function and the maximum-likelihood fit-
ting procedure suggested by Watson (1979). Figure 1 il-
lustrates the experimental parameters for a psychophysi-
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Figure 1. The Weibull/Quick Observer: The psychometric func-
tion (curve), intensities at which data is collected (A), and possible
data (x).

cal measurement of threshold using the method of constant
stimuli and a forced-choice procedure. The experimenter
presents stimuli whose intensities are chosen from among
a prespecified set of intensity levels, marked by small tri-
angles on the log intensity axis. The observer judges the
stimulus on each trial. The observer’s performance is sum-
marized by listing the intensities [,, L, ... Iy, the num-
ber of trials at each intensity n,, n,, ... ny, and the num-
ber of trials of the n; where the observer succeeded,
denoted c;. If the trials are assumed to be independent,
and the true probability of success p; at level /; is assumed
to be constant over time, then the 3N numbers [;, n;, and
¢; completely capture the observer’s performance.
Figure 1 records this performance graphically: the propor-
tion of successes (X) is plotted versus intensity.

The observer’s performance is then reduced to two
parameters by fitting a psychometric function to the data
(the solid line in Figure 1). In this paper, the two-
parameter Weibull cumulative distribution function is
used. Its equation is

pp=1— eI [ €0, 00), (1)

where pp, is the probability of correct detection at inten-
sity 1, and « and 3 are the parameters adjusted in fitting
the data. The parameter « is a location parameter semi-
log coordinates; changing « shifts the curve to the left
or right without changing its shape. The parameter 3 is
a scale parameter in semilog coordinates that determines
the slope of the function.

An observer succeeds in a two-alternative forced-choice
(2AFC) trial with probability one half by guessing alone.
Consequently, the probability of success is related to the
probability of detection by pc = %% + Vapp.

The fitting method used is maximum-likelihood esti-
mation of the two parameters « and 3 from the data as

described in Watson (1979). This procedure maximizes
the combined likelihood of the N independent binomial
outcomes ¢; given n,,I; by choice of estimates &, 3. The
program psifit described in the Appendix implements this
fitting method.

The bias of the estimator § is the expected value of the
discrepancy between § and 8. Estimates of the slope of
the psychometric function, for example, are biased in typi-
cal experimental conditions: Estimates of a slope whose
true value is 2 could average around 2.1 for particular
experimental conditions. Knowing the bias of an estimate
is important when we compare an observer’s performance
against a theoretical prediction of that performance, de-
rived, for example, from an ideal observer model.

The variance is E[(3 — E(§))*], and the standard devi-
ation (SD) is the square root of the variance. A 95% non-
parametric confidence interval (NCI) is gotten by estimat-
ing the 2.5th percentile and the 97.5th percentile of the
distribution of B (Efron, 1981). Bias, standard deviation,
and confidence intervals are defined in an analogous
fashion for &.

The bias, standard deviation, and confidence intervals
for the maximum-likelihood estimates &, 3 depend in a
complex way on the true values of « and 3, the N inten-
sity levels /;, and the number of trials n, taken at each
intensity level. An alternative method for computing the
standard deviation and confidence intervals (mentioned
in the previous section) would make use of the remarka-
ble fact that maximum-likelihood estimators are asymp-
totically Gaussian with mean value the true value of the
parameter, and standard deviation computable in theory
from the distribution (Cox & Hinkley, 1974, pp. 283-
304; Mood, Graybill, & Boes, 1974, pp. 358-362; and,
for the multiparameter case, Kendall & Stuart, 1979,
pp. 59-64). If sufficient trials are taken, then these asymp-
totic results could in principle be used to estimate stan-
dard deviation and establish confidence intervals, but, in
practice, the equations are too complex to solve analyti-
cally. In any case, asymptotic results cannot be used to
estimate bias in the estimators, for maximum-likelihood
estimators are asymptotically unbiased.

In Figure 2, we plot the distributions of & and § for
an observer whose performance is described by a Weibull/
Quick psychometric function with logecx = 9.0 and
B = 2.5. The values of o and 3 chosen are realistic for
an observer in many vision experiments (Wandell, 1985)."
The number of different intensities is as in Figure 1: N
is 7, and the intensities log,,(/;) are taken to be 8.7, 8.8,
8.9,9.0, 9.1, 9.2, and 9.3. The number of trials at each
intensity is taken to be 30 (210 trials total).

Figure 2A is a histogram of fitted values of & and 2B
a histogram of §, for 1,000 simulated replications of the
experiment (computed using MOCSsim; see below and
Appendix). The values of log,. are approximately un-
biased and normally distributed. Estimates of § are
markedly skewed and non-normal. Asymptotic methods
(inappropriate for estimating bias in any case) are not ap-
plicable to slope estimates in this experimental situation.
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Figure 2. Repeated estimates of log,oa and 3, based on simula-
tion of the observer and experiment specified in Figure 1 with 30
trials at each intensity.

About 500 trials total (70 per intensity level) are needed
before the distribution of § is not obviously skewed. In
conclusion, asymptotic methods are analytically intrac-
table and not always appropriate for realistic experimen-
tal conditions.

In the next section, a method based on Efron’s para-
metric bootstrap is described (see Efron, 1979a, 1981,
1982, 1985), which uses resampling and Monte Carlo
simulation to estimate the bias, standard deviation, and
confidence intervals for & and f given I;, n;, ¢;, i = 1,
2, ... N, the observer’s measured performance.

ESTIMATING BIASES
AND STANDARD DEVIATIONS
OF PSYCHOMETRIC PARAMETERS

The experimenter’s task is to estimate the values of
threshold « and slope 3 that characterize a particular ob-

server’s performance in a particular experimental situa-
tion. Figure 3 represents the experimental situation.
Values of « are plotted on the horizontal axis (logarith-
mic scale) and values of 8 on the vertical. The observer’s
psychometric function corresponds to some point on this
plane, as yet unknown to the experimenter. The ex-
perimenter places forced-choice trials at N values of in-
tensity, I;, represented by solid triangles along the
horizontal axis, and, on the basis of the outcome of these
trials, estimates the location of the point corresponding
to the observer’s psychometric function. Suppose now
that, unknown to us, the observer’s psychometric func-
tion corresponds to the point marked by a @ in Figure 3.
Assume that 120 2AFC trials are taken at each intensity
marked by a triangle (840 trials total). The maximum-
likelihood fitting procedure provides us with estimates of
the two parameters, « and B, that can also be plotted as
a single point on the plane in Figure 3.

Repeated measurements under these conditions would
result in multiple estimates &, 3, suggested on the figure
by the points marked with Xs. These values were obtained
by Monte Carlo simulation of the experiment described:
The program MOCSsim described in the Appendix takes
as input a specification of an ideal Weibull/Quick observer
(that is, o and 3), as well as a specification of an ex-
perimental situation (intensity levels and number of trials).
It then repeatedly simulates an experimental session, fits
the data (in the same way as psifit does), and outputs the
estimates &, 3.

The discrepancies between these estimates and the true
values of the parameters have two sources: the variabil-
ity of the estimation procedure (the spread of the cloud
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Figure 3. Log threshold o for an observer is plotted on the horizon-
tal axis and slope 8 on the vertical. Each point corresponds to a pos-
sible psychometric function. The solid triangles (4) on the horizon-
tal axis represent intensities where the experimenter places 2AFC
trials. The bullet (@) represents an observer’s true psychometric
function, and the X’s represent possible estimates of the true values
in the experiment where 120 2AFC trials are taken at each location
marked by a triangle. The standard deviation of estimated 8 for
each possible psychometric function is plotted as a contour plot. The
numbers in each region represent the standard deviation of 3 times
100. See text for details.
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of Xs) and the bias of the estimation procedure (the ex-
tent to which the cloud is not centered at the point «, ).
As noted above, the bias and variability of these estimates
depend in a complicated way on the number of trials taken
and the position of the trials relative to the true location
parameter «. But, if we knew the true values « and 3 for
a given observer (which, of course, we never do), we
could compute the bias and variability of the estimates
obtained for that observer in a measurement by direct
Monte Carlo simulation of that measurement. We could
compute biases, standard deviations, or confidence inter-
vals for @ or 3 (or confidence regions for the joint
parameters), simply by simulating the experiment many
times and computing the distribution of the estimated
parameters based on the simulated outcomes. The esti-
mated distribution of the parameters converges uniformly
to the true distribution, since they are maximum-likelihood
estimates (Cox & Hinkley, 1974, pp. 283-304; Kendall
& Stuart, 1979, pp. 59-64; Mood et al., 1974,
pp. 358-362). Consequently, with weak assumptions,
measures derived from the simulated distribution, such
as its variance, converge to the corresponding values for
the true distribution. We can therefore compute values
of interest, as, for example, the standard deviation of 3,
for any point o, in the plane.

Figure 3 is actually a three-dimensional contour plot.
The third dimension, vertical to the page, is the standard
deviation of §3 as a function of true « and true 3 when 3
is estimated in the 840-trial method-of-constant-stimuli ex-
periment described above (Figure 2B). Details of the com-
putation of the contour plot are described in the Appendix
under MOCSsim. The numbers between the contours are
this standard deviation times 100. For example, the point
marked with a bullet (®) corresponds to a Weibull observer
with o« = 9 and @ = 2. Inspecting the contour plot, we
note that the expected standard deviation of estimates of
3 returned by this observer over the course of a large num-
ber of repetitions of the 840-trial measurement is about
0.08. In contrast, consider the Weibull observer with
o = 8.8 and 8 = 4, whose standard deviation is about
0.30. The placement and spacing of trials in the 840-trial
measurement does not permit as reliable a measure of 8
for this observer as for observer ®.

As mentioned above, the contours in this plot are de-
termined by the number and spacing of trials. Note that
the variability of the estimate is lowest at the bottom center
of the figure. This outcome is expected for the following
reasons: If the true value of « is much higher or lower
than the bulk of the trial intensities, the estimate of §
suffers. As 3 increases, the extreme trial intensities fall
on regions of the psychometric function where they are
either never seen or always seen and variability also in-
creases. The two effects combine to produce the sharp
rise in the ‘‘northeast’” quadrant of the figure.

If we knew the true value of «, 3 for the observer in
this experiment, we could read off the standard deviation
of § from Figure 3. Instead, we know estimates of  and
(3 obtained experimentally, & and 3. The parametric boot-
strap is used to estimate the value of the standard devia-

tion § in the following way: Assume that &, /3 are the true
values for an observer, the bootstrap observer. Compute
the standard deviation of estimates for this bootstrap ob-
server by simulation. Use the computed estimates of bias
and standard deviation of the bootstrap observer as esti-
mates of the corresponding parameters for the true ob-
server at «, 3.

The contour plot serves the purpose of explaining the
intuition behind the parametric bootstrap method. In
Figure 3, the height of the contours above each of the Xs
provides a good estimate of the height of the contours
above the ®, which is the desired standard deviation of
B. If our estimates a, 3 are ‘‘close enough’’ to the true
values «, 3, the estimated standard deviation based on 3
will be close to the desired value based on 3. “‘Close-
ness’’ here depends critically on how flat the contour plot
is in the vicinity of the true point. The flatter it is, the
greater the error in the estimate &, 3 that can be tolerated
and still produce good approximations to the desired es-
timate of the standard deviation of .

The justification of the procedure is the theorem men-
tioned above: For sufficiently many data points, &, 3 con-
verge to the true values «, 3, since the estimates are joint
maximum-likelihood estimates (Kendall & Stuart, 1979,
pp- 59-64). Eventually, then, the point &, will very
likely fall in a small neighborhood of the true point over
which the contour surface of the standard deviation of 3
changes little.

Contour plots similar to those in Figure 3 can be com-
puted for the standard deviation of a, for the bias of &,
and for the bias of 3 (see Appendix). The four contour
plots (including Figure 3) form an excellent summary of
the statistical characteristics of a particular experimental
design (number of trials, intensities), but, in actual use,
no plots are involved in computing bootstrap estimates
of the standard deviations and biases of the estimates of
the parameters «, 3. The parametric bootstrap uses the
program MOCSsim to estimate the bias and standard devi-
ations of the estimates of « and g directly by simulation.
The actual procedure reduces to the following:

1. Do an experiment. Fit the data (psifit) to get esti-
mates &, 3 as usual.

2. Use MOCSsim to perform n Monte Carlo simula-
tions (n in the range 500-1,000) of the original experi-
ment (termed bootstrap replications) using & and § in
place of the (unknown) parameters « and 3, but using the
same selection of intensities and the same number of trials
at each intensity as in the original experiment. After each
replication, the simulated responses are fitted just as the
original observer’s data were fitted, obtaining bootstrap
estimates of and 8F (i = 1, 2, ... n), one pair of esti-
mates for each replication.

3. Compute the bias and standard deviations of the boot-
strap estimates. The bootstrap estimate of the bias and the
standard deviation of 3 are the bias and the standard devi-
ation of the bootstrap estimates:

Bias*(3) = g*—§ 3)

and
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/here B * is the mean of the bootstrap estimates. The cor-
esponding quantities for o are defined analogously. The
rogram anlyz described in the Appendix computes these
alues and others from the output of MOCSsim.

Figure 4 illustrates the parametric bootstrap computa-
ion. The true (unknown) values characterizing the psy-
hometric function are plotted as a ®. A single ex-
)erimental measurement of a, § is plotted as an X. This
woint corresponds to the bootstrap observer. A few boot-
trap replications are plotted as asterisks. The similarity
etween the distribution of the bootstrap replication
iround the point X in Figure 4 to the distribution of the
xs around the point @ in the previous figure is the key
dea behind the parametric bootstrap estimate. To the ex-
ent that the estimates & and 3 are close to the true values
¥, 3, and to the extent that the ‘‘landscape’’ of the con-
our plot near «, 8 is flat, the obtained bootstrap estimates
wre accurate. The parametric bootstrap is computation-
dly intensive, like the maximum-likelihood Weibull es-
imation procedure that it employs. Estimation of bias and
:onfidence intervals for psychometric functions using a
SUN 3/160 computer consumed approximately 5 min of
ZPU time per function, considerably less time than was
-equired to collect the data initially. The use of such com-
sutationally intensive methods is now common in statis-
ics (Efron, 1979b).

COMPUTATIONAL EVALUATION
OF THE METHOD

When does the method work, and how acurate are the
estimates?

Figure 4. The axes are as in Figure 3. The point marked with a
bullet (@) represents the true (unknown) psychometric function. The
point marked with an X represents the outcome of a single experi-
ment. The asterisks (¥) represent bootstrap replications based on
the experimental measurement.

Table 1
Estimates of Bias and Standard Deviation (SD),
and Nonparametric Estimates of Variability, for the
Location Parameter log,o« in Simulated Experiments

Bias SD IQR NCl/4
Condition 1 (210 Trials)
-0.0015 0.0410 0.0425 0.0408
-0.0026 0.0365 0.0365 0.0364
-0.0018 0.0468 0.0448 0.0474
—-0.0014 0.0446 0.0441 0.0458
-0.0015 0.0429 0.0422 0.0417
Condition 2 (420 Trials)
-0.0002 0.0287 0.0293 0.0273
0.0011 0.0383 0.0373 0.0371
-0.0011 0.0281 0.0282 0.0272
—0.0007 0.0291 0.0282 0.0283
—0.0003 0.0305 0.0296 0.0293
Condition 3 (700 Trials)
-0.0002 0.0212 0.0210 0.0203
0.0003 0.0264 0.0261 0.0261
-0.0005 0.0182 0.0182 0.0175
-0.0001 0.0201 0.0197 0.0193
—-0.0003 0.0196 0.0189 0.0192

Note—IQR = difference between upper quartile and lower quartile,
divided by 1.35. NCI = difference between 97.5th percentile and 2.5th
percentile. The three simulated experiments (Conditions 1-3) were done
according to the method of constant stimuli, with seven equally spaced
intensities as shown in Figure 1, and with 30, 60, and 100 trials per
intensity level (210, 420, and 700 trials total) respectively. The correct
values for each simulated experiment are given in the first row, fol-
lowed by the results of four simulated applications of the parametric
bootstrap to that experiment.

Direct Monte Carlo simulation as in Figure 3 allows
us to evaluate how well the bootstrap estimate will do in
a given experimental context. The program MOCSsim is
the main tool used. The observer’s true performance is
assumed to correspond to the psychometric function plot-
ted in Figure 1 (log,ca= 9.0, 8 = 2.0). MOCSim is then
used to simulate an experiment using the method of con-
stant stimuli and the intensities shown in Figure 1. The
data from the simulated experiment is then fitted to ob-
tain estimates &, 3, and the parametric bootstrap is applied
to estimate bias and three measures of variability denoted
SD, IQR, and NCI/4. SD is standard deviation as above.
IQR is the difference between the upper quartile and the
lower quartile divided by 1.35. With that scaling factor
(1.35), the IQR will have the same average value as SD
when the sampling distribution is Gaussian. When the
sampling distribution is non-Gaussian, it is less sensitive
to outliers. NCI is the difference between the 97.5th per-
centile and the 2.5th percentile, a nonparametric 5% con-
fidence interval. NCI/4 will approximate SD for a Gaus-
sian distribution. The bootstrap estimates, based on a
single experiment, can be compared to the true values of
SD, IQR, and NCI/4.

Tables 1 and 2 report the results of four simulated ex-
periments for each of three experimental conditions. Con-
dition 1 had 30 trials at each intensity level (210 total),
Condition 2 had 60 (420), and Condition 3 had 100 (700).
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Table 2
Estimates of Bias and Standard Deviation (5D),
and Nonparametric Estimates of Variability, for the
Slope Parameter § in Simulated Experiments

Bias SD IQR NCl/4
Condition 1 (210 Trials)
0.1204 0.6058 0.5480 0.5958
0.1750 0.6482 0.5530 0.6652
0.0891 0.4940 0.4620 0.4882
0.1090 0.5590 0.5155 0.5567
0.1028 0.5553 0.4873 0.5357
Condition 2 (420 Trials)
0.0613 0.4013 0.3897 0.3876
0.0298 0.3336 0.3282 0.3296
0.0682 0.4022 0.3959 0.3901
0.0578 0.3920 0.3715 0.3831
0.0510 0.3793 0.3791 0.3760
Condition 3 (700 Trials)
0.0493 0.3021 0.2808 0.3015
0.0345 0.2493 0.2409 0.2362
0.0752 0.3751 0.3651 0.3646
0.0518 0.3205 0.2930 0.3213
0.0637 0.3720 0.3503 0.3830

Note—/QR = difference between upper quartile and lower quartile,
divided by 1.35. NCI = difference between 97.5th percentile and 2.5th
percentile. The three simulated experiments (Conditions 1-3) were done
according to the method of constant stimuli, with seven equally spaced
intensities as shown in Figure 1, and with 30, 60, and 100 trials per
intensity level (210, 420, and 700 trials total) respectively. The correct
values for each simulated experiment are given in the first row, fol-
lowed by the results of four simulated applications of the parametric
bootstrap to that experiment.

The entry labeled, for example, ‘‘Cond 1’ shows the true
SD, IQR, NCI/4 for that condition, and the SD, IQR, and
NCI/4 for the true o = 9.0, 8 = 2.0 observer. The four
experimental simulations evaluating the bootstrap method
follow the entry for each condition. Table 1 reports results
for log,or; Table 2 reports results for 3. For example,
in Table 2, Condition 1, the *‘true’’ value of §D for §
is 0.6058, and the four bootstrap estimates are 0.6482,
0.4940, 0.5590, and 0.5553. Each of these represents an
estimate of §D that could have been obtained in an ex-
perimental situation by using the parametric bootstrap.
The bootstrap values of Bias, SD, IQR, and NCI/4 are
usable estimates of the corresponding true values in both
tables.

One measure of the usefulness of the bootstrap method
is to ask how much effort on the part of the experimenter
(and observer) is saved by using it. Suppose that, instead
of using the bootstrap method, the experimenter decided
to estimate the SD of 3 by replicating the experiment n
times and computing the SD of the n estimates. How big
would n have to be before the ratio of the empirically es-
timated SD was typically so close to 1 as the estimates
obtained by the bootstrap method in Tables 1 and 27

In the analysis that follows, the distribution of § is as-
sumed to be approximately Gaussian. The ratio of an es-
timate of the standard deviation of a Gaussian random
variable with samples of size n to the true SD is distributed

as the square root of an F distribution with (n—1, o)
degrees of freedom. Assume that the smaller of the true
SD and the estimated SD is placed in the denominator so
that the ratio is greater than or equal to 1 (see Hays, 1988,
chap. 9). In Tables 1 and 2, we have reported four repli-
cations of each simulated experiment. The largest ratio
between the simulated parametric bootstrap SD and the
true SD in Condition 1 is 0.0468/0.0410 = 1.14. The lar-
gest ratios for SD in the three conditions for Conditions
1,2, and 3 for o are 1.14, 1.33, and 1.24, respectively.
For §3 in Table 2, the corresponding values are 1.33, 1.19,
and 1.24.

The distribution of the maximum ratio of four samples
from an F distribution with F(n—1, e) degrees of free-
dom is computable from the F distribution (it is not an
F distribution).? The 75th percentile of the distribution
of the maximum ratio is 1.33 for n = 10, 1.24 for n = 20.
These results suggest that the estimate of SD obtained
using the parametric bootstrap method replaces about
10 replications.

AN EMPIRICAL TEST OF THE METHOD

In this section, we test the applicability of the bootstrap
method by comparing it directly to empirical data. A basic
assumption of the bootstrap method is that we can treat
a bootstrap replication as if it were a replication of the
original measurement, at least for the purposes of com-
puting means and standard deviations of « and 8. Conse-
quently, if we actually replicate the empirical experiment,
requiring the observer to estimate multiple psychometric
functions under identical conditions, the observed varia-
bility of the repeated empirical estimates a,(, should
match the estimated variability computed by means of the
parametric bootstrap®.

This section summarizes results of experiments in which
observers were asked to repeatedly measure threshold for
2AFC detection of spectrally narrowband, 4°, 50-msec
test lights against a 10° bright 510-nm field. Observers
used the method of constant stimuli. Each observer
repeated the measurements several times. The experiment
involved only three test wavelengths: 440, 560, and
670 nm. Subjects made 30 trials at each of 7 intensity
levels spaced at 0.1 log unit intervals around threshold
(threshold was previously estimated by a staircase proce-
dure). Details of the empirical procedure and motivation
for the measurements are to be found in Maloney (in
press).

The data were analyzed as follows: For each repetition
by each observer at each wavelength in the experiment,
the 210 trials were fit using psifit. This procedure provided
several estimates of o and 8 for each observer and
wavelength based on 210 trials each. Bootstrap estimates
of bias and variability were based on the median value
of obtained estimates for « and the median value of esti-
mates of 3 (one estimate of bias and one estimate of stan-
dard deviation for each observer and each wavelength)
using MOCSsim. The distribution of 3 is very skewed
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Figure 5. Estimates of 8 for each of four wavelengths for 4 ob-
servers. The vertical bars delimit the 95% confidence intervals com-
puted using the bootstrap method on the median of the estimates
for each observer, for each wavelength. The confidence intervals
here are based on the 2.5th and 97.5th percentiles of the bootstrap
replications, since the actual distribution of § is markedly skewed,
with only 210 trials per psychometric function.

with so few trials, dictating the use of the median. For
the same reason, the 2.5th and 97.5th percentiles of the
bootstrap distribution were used as a 95% confidence in-
terval (the confidence interval given by anlyz). These are
difficult conditions under which to estimate 3; conse-
quently, they are good conditions under which to test the
bootstrap method.

Figure 5 contains the estimated slopes from the experi-
ment for each of three observers. The error bars are the
bootstrap 95% confidence intervals about the unbiased
median value of slope for each wavelength and observer.

Estimates of slope under these conditions are biased and
very variable. Where a single observer measured multi-
ple estimates, we can compare the variability of the data
with the predicted variance gotten from the bootstrap by
an Ftest (Hays, 1988, pp. 334-335). The confidence in-
tervals agree with the actual variability of the observers,
except for one point at 440 nm for observer L.M. The
parametric bootstrap predicts the empirical variability of
estimates of 3 under these experimental conditions. Esti-
mates of « (not shown) were also in good agreement with
predicted confidence intervals.

EXTENSIONS

The method is extendable to other psychophysical
methods and models. Such extensions are most easily

described in terms of changes to the programs psifit and
MOCSsim:

nAFC methods. For forced-choice methods with n al-
ternatives, pc=%-+%pp is replaced by pc=
v+(1-v)pp where y=1/n. The programs psifit and
MOCSsim accept vy as an input parameter. No other
changes are needed.

Yes-no rather than forced-choice tasks. Set v to 0 if
detection is assumed to result in a ‘‘yes’” response. Other-
wise, see Nachmias (1981) for a discussion of ~.

Other parameters. Experimenters may prefer to use i,
the intensity at which the observer is correct with proba-
bility &, as an index of threshold. If program MOCSsim
is modified to compute and print out I, in place of &,
anlyz will provide estimates of the bias and variability of
I, in place of the corresponding estimates for «.

A different family of psychometric functions. All that
is needed is to change the computation of likelihood in
psifit and MOCSsim to agree with the new family of func-
tions. The new family may have more or fewer parameters
than the two-parameter Weibull. Nachmias (1981), for
example, suggests that v may also be estimated from ob-
servers’ data in yes-no tasks; it need not be assumed to
be 0. Then the estimate y can be assigned a confidence
interval by the parametric bootstrap method.

Staircase methods. The computation in psifit is not af-
fected by the order in which experimental trials were
taken. However, in staircase methods, the choice of in-
tensities does depend on performance during the experi-
ment. The program MOCSsim, useful for method-of-
constant-stimuli experiments, must be replaced by a pro-
gram that simulates staircase experiments. The other pro-
grams are unaffected.

SUMMARY

Bootstrap methods and related sampling methods are
now frequently used in statistics. They permit computa-
tion of statistical estimates that are analytically intract-
able or not adequately approximated by asymptotic
methods. The parametric bootstrap presented here per-
mits computation of estimates of bias, standard deviation,
and confidence intervals for the parameters o and 3 of
the Weibuil/Quick psychometric function. It is readily
adapted to other experimental conditions and choices of
psychometric function.

Evaluations of the method for the ideal Weibull/Quick
observer, and for human observers, suggests that it pro-
vides useful estimates of bias, standard deviation, and con-
fidence intervals for the purpose of testing hypotheses con-
cerning psychophysical performance using MOCSsim
with 200-300 or more trials.
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NOTES

1. The many parameters that affect the estimates can be simplified
slightly. First, only the position of the intensities log;o/; relative to the
location parameter (in semilog coordinates), log,oc, matter. If a com-
mon offset is added to log,. and each of the intensities, the estimates
a,f3 are shifted. Second, § is a scale parameter: If the grid of intensities
I, is shrunk or expanded linearly around the point log,.c, the resulting
change is equivalent to scaling § by the same factor. For convenience,
the same values log,ca=9, 8 = 2, with a method-of-constant-stimuli
grid of test intensities at 8.7, 8.8, 8.9, 9.0, 9.1, 9.2, and 9.3, were
used throughout this paper in examples and simulations. The values
logar=10, 8 = 2, and a grid of intensities at 9.7, 9.8, 9.9, 10.0, 10.1,
10.2, and 10.3 would produce identical results.

2. To compute the 75th percentile of the maximum of 4 samples from
an F distribution with (n—1, ) degrees of freedom, note that

0.75 = PIMAX < x] = Flx,n—1, )",

whenever F(x,n—1, ) = 0.931. For various values of n, we can com-
pute x. The statistical language S was used to compute the values in
the text (Becker & Chambers, 1984), taking infinity to be 500. F(x,9, )

= 0.931, for example, when x = 1.78. The value reported in the text
is the square root of 1.78, 1.33,

3. If the observer’s true slope changes from session to session, the
effect will be to inflate the SD estimated from the empirical replica-
tions relative to the true values.

APPENDIX

Send requests for programs to Itm@kepler. psych.nyu.edu. In-
clude a full electronic mail address and a full street address.
Programs will be sent to the electronic mail address.

Currently available programs are written in FORTRAN 77
under SUN UNIX 4.3BSD. The FORTRAN 77 version of the
programs psifit and MOCSsim use the STEPT 74 package
(Chandler, 1975), obtained separately from The Quantum
Chemistry Program Exchange, Chemistry Department, Indiana
University, Bloomington, IN 47405.

1. psifit: Fits the two parameter Weibull/Quick psychomet-
ric function as described in Watson (1979). Output is estimates
&,(3, various thresholds, and a summary of the fit.

2. MOCSsim: Repeatedly simulates the performance of a
Weibull/Quick observer with parameters «, 8, and y (Nach-
mias, 1981), and fits the two-parameter Weibull/Quick psycho-
metric function to the data. Output is as many simulated &,
pairs as desired. This program is also used to compute the para-
metric bootstrap described in the text.

Random number generators: MOCSsim uses the random
function available in UNIX 4.3BSD. Other uniform RNGs
may be substituted as documented in the program text.

Contour maps: Computation of the contour maps (Figures
3 and 4) is not part of the bootstrap computation. However,
MOCSsim can be easily adapted to compute them if desired.
In constructing Figures 3 and 4, the program MOCSsim
was used to simulate 200 replications at each location and
estimate SDj at each of 100 locations, o, 8;, 1 = 1,2, ...
10,j = 1,2, ... 10. The values «;, 3; were equally spaced
in the rectangle drawn in Figures 3 and 4. The square grid
of computed SD; values was used to estimate the contour
plot via Akima’s method (Akima, 1978) using the interp
function of the statistical language S (Becker & Chambers,
1984). Any other contour fitting program could be sub-
stituted.

3. anlyz: Accepts o, and multiple &,3 pairs and computes
several measures of variability. For each of @ and j these mea-
sures include:

MEAN: mean of the estimates.

BIAS: bias of the estimates.

SD: estimated standard deviation about the mean.

MEDIAN: median of the estimates.

Q1, Q3: quartiles.

IQR: interquartile range (Q3-Q1)/1.35. With the scal-
ing factor 1.35, the reported value should approximate the
SD when the distribution of the estimate is Gaussian. For
non-Gaussian distributions, it is less sensitive to outliers.

NCI: the estimated 2.5th percentile and 97.5th percen-
tile, a nonparametric confidence interval (Efron, 1981).
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